V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
V2EX  ›  necomancer  ›  全部回复第 1 页 / 共 30 页
回复总数  583
1  2  3  4  5  6  7  8  9  10 ... 30  
18 天前
回复了 necomancer 创建的主题 职场话题 我是老了么……
@SIEMENS +1s +1s +1s
19 天前
回复了 Yimkong 创建的主题 MacBook Pro 最近发现苹果 12 和 m1 充电漏点
官方好像只有那个加长线上带三相头
1. P 里每一个向量维度都是 N
2. 我相信构造方法课里有,用一般关系写不下,举个 4x4 的例子:
f(a,b,c,d) = (0,a,d,0)
则存在 f^2 = 0 ,f 的 nilpotent index 为 2
w_1 = Ker f = {(0,b,c,0)}
w_2 = Ker f^2 = (a,b,c,d)
令 b_1 为 w_1 的基,则 b_1 = (0,1,0,0) (0,0,1,0)
令 t_2 为 w_2/w_1 的基,则 t_2 = (1,0,0,0) (0,0,0,1)
f(t_2) = (0,1,0,0) (0,0,1,0)
于是
t_2 ~ (1,0,0,0) (0,0,0,1)
t_1 ~ f(t_2) = (0, 1, 0, 0) (0, 0, 1, 0)
则按照 t_1 t_2 的行顺序取列:
b = {(0,1,0,0),(1,0,0,0),(0,0,1,0),(0,0,0,1)} 为一组基,对应
p =
........|0 1 0 0|
........|1 0 0 0|
........|0 0 1 0|
........|0 0 0 1|
P^{-1}AP =
|0 1 0 0|
|0 0 0 0|
|0 0 0 1|
|0 0 0 0|

A 为 f 对应的矩阵
|0 0 0 0|
|1 0 0 0|
|0 0 0 1|
|0 0 0 0|
21 天前
回复了 necomancer 创建的主题 职场话题 我是老了么……
@luffy 啊对对对,不写了,不写了
21 天前
回复了 necomancer 创建的主题 职场话题 我是老了么……
@wangsahala 啊对对对,我检讨,我检讨
22 天前
回复了 necomancer 创建的主题 职场话题 我是老了么……
我感觉我说得好像有歧义,仔细看过原贴里的回复,抛开原贴复杂混乱的叙事风格,我对有人在质疑这句谁说的,所以英文好不好这件事(虽然原帖主有 typo )感到很诧异,是我不懂现在的说话方式了还是长者已经逐渐被人遗忘?——都令我感受到了时间嗖嗖的就过去了……
22 天前
回复了 necomancer 创建的主题 职场话题 我是老了么……
@0x400 +1s
29 天前
回复了 DianQK 创建的主题 随想 承认平庸,接受平庸,但我要变强
会秃。
37 天前
回复了 sober1215zxy 创建的主题 Python 请教关于阶梯曲线数据的处理问题
如果你数据抖动非常小的话,高斯平滑一下求拉普拉斯,零点就是 step 边界,或者跳跃如果非常 sharp ,也可以试试 canny filter ,效果好,参数少并且简单。meanshift 方法更适用于数据抖动比较大,step 其实不能太算 step ,反而带着斜率
37 天前
回复了 sober1215zxy 创建的主题 Python 请教关于阶梯曲线数据的处理问题
start, xmins = [], []
写错了。。。
37 天前
回复了 sober1215zxy 创建的主题 Python 请教关于阶梯曲线数据的处理问题
from sys import argv

import numpy as np
from matplotlib import pyplot as plt
from scipy.ndimage import gaussian_filter1d
from scipy.stats import linregress
from sklearn.cluster import MeanShift

x, y = np.loadtxt(argv[1]).T
y_orig = np.copy(y)
y = np.pad(y, (y.shape[0] // 10, 0), mode='edge') # 往前插 10 分之一的 y[0],相当于 y[0]是独立的一个 cluster
y = gaussian_filter1d(y, 85, mode='nearest') # 宽度自己调到合适,没啥涨落的数据可以不用

clustering = MeanShift(bandwidth=None).fit(y[:, None])
lbs = clustering.labels_[y_orig.shape[0] // 10:] # 前面的可以不要了,第一个值相当于 y[0]的 label

plt.plot(x, y_orig, alpha=.5)
start, xmins = [], [], []
for c in set(lbs):
....r = linregress(x[lbs == c], y_orig[lbs == c])
....plt.plot(x[lbs == c], r.slope * x[lbs == c] + r.intercept) # 当数据波动大的时候,用了线性拟合画出来效果好一些,如果你数据的 unitstep 很平,用下面直接画平台值就行
....# plt.hlines(np.mean(y_orig[lbs == c]), xmin=x[lbs==c][0], xmax=x[lbs==c][-1], color='k', lw=4)
....start.append(r.slope * x[lbs == c][0] + r.intercept)
....xmins.append(x[lbs == c][0])
print([x for _, x in sorted(zip(xmins, start))]) # sort from left to right
plt.show()
37 天前
回复了 sober1215zxy 创建的主题 Python 请教关于阶梯曲线数据的处理问题
看一下 meanshift 算法, scikit
47 天前
回复了 huzhikuizainali 创建的主题 数学 如何证明一个非零向量的伪逆?
统一啊,令 u, v 都是单位向量,sigma 是归一化因子忽略,则 uTu=vTv=1 ,那么 A = uvT ,A+的构造不就是 vuT 吗,AA+ = uvTvuT=uuT 么,这是定义啊,AA+A = uvTvuTuvT = uvT=A,A+AA+ = vuTuvTvuT=vuT=A+你可以接着验证剩下的两个 MP inverse 的条件,这就是 MP inverse 的定义
卧槽我看了一下难道 faceswap 本来就是 64x64.....上 32x32 ?糊成头像( ̄▽ ̄)
1920x1080 是不行的,你试试 64x36 ,缩小 G 和 D 的 filter 个数,把 64 ,128 ,256 ,512 换成 8 ,16 ,32 ,64 ,训练起来就快多啦~无非是糊得抽象些,加油~
47 天前
回复了 huzhikuizainali 创建的主题 数学 如何证明一个非零向量的伪逆?
x+ x = xTx/xTx = 1 这是直接构造出来的,不太理解你想证明啥
48 天前
回复了 kisshere 创建的主题 问与答 有没有装 B,便宜,做工还好的手表?
casio 海神系列。casio oceanus s4000 ~ s5000 系列,而且实用。
54 天前
回复了 Seattle 创建的主题 机器学习 正弦信号能于深度学习吗
信号如果抖动不大或者考虑 STFT 以后当图处理……就硬上机器学习
54 天前
回复了 Seattle 创建的主题 机器学习 正弦信号能于深度学习吗
@Seattle 考不考虑做个小波变换然后当图处理?
1  2  3  4  5  6  7  8  9  10 ... 30  
关于   ·   帮助文档   ·   API   ·   FAQ   ·   我们的愿景   ·   广告投放   ·   感谢   ·   实用小工具   ·   3730 人在线   最高记录 5497   ·     Select Language
创意工作者们的社区
World is powered by solitude
VERSION: 3.9.8.5 · 50ms · UTC 01:24 · PVG 09:24 · LAX 18:24 · JFK 21:24
Developed with CodeLauncher
♥ Do have faith in what you're doing.